
Effective Computation for Nonlinear Systems

Pieter Collins�

Centrum voor Wiskunde en Informatica,
Postbus 94079,

1090 GB Amsterdam,
The Netherlands

Pieter.Collins@cwi.nl

Abstract. Nonlinear dynamical and control systems are an important
source of applications for theories of computation over the the real num-
bers, since these systems are usually to complicated to study analytically,
but may be extremely sensitive to numerical error. Further, computer-
assisted proofs and verification problems require a rigorous treatment of
numerical errors. In this paper we will describe how to provide a seman-
tics for effective computations on sets and maps and show how these
operations have been implemented in the tool Ariadne for the analysis,
design and verification of nonlinear and hybrid systems.

Keywords: computable analysis, nonlinear systems, Ariadne.

1 Introduction

A simple but important problem in nonlinear systems theory is that of safety
verification. Given an autonomous system, xn+1 = f(xn) or ẋ = f(x), we wish
to determine whether the evolution of the system starting in an initial set X0
remains in some safe set S. To solve such a problem we need a method which
can rigorously compute the image of a set or integrate a differential equation
over a set of points. Further, we want our algorithm to be efficient enough to
be practically useful, and optimal, in the sense that if it is theoretically possible
to decide safety, then the algorithm returns the correct answer. For hybrid sys-
tems (see [1]), which combine continuous-time and discrete-time evolution, the
problem is even more challenging.

There has been much work recently on computable analysis [2,3], which pro-
vides a theory of computation on objects from geometry and analysis such as sets
and maps, and is essential equivalent to approaches based on Scott domains [4].
This theory can be applied to discuss the computability of the reachable set [5],
which plays a crucial role in safety verification.

There are many algorithms for rigorously integrating differential equations,
dating back to work of Moore [6] from the early days of interval analysis, and.

Many tools have been developed which are capable of computing or approx-
imating reachable sets. The package GAIO [7] may be used to compute the
� This work was partially supported by the Nederlandse Wetenschappelijk Organisatie

(NWO) through VIDI project number 639.032.408.

S.B. Cooper, B. Löwe, and A. Sorbi (Eds.): CiE 2007, LNCS 4497, pp. 169–178, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

170 P. Collins

image of a set, but does not provide a rigorous method for integrating differ-
ential equations. The Lohner method for rigorous integration is available in the
CAPD Library [8], and higher-order Taylor methods are implemented in VN-
ODE [9]. Other tools are available for reachability analysis of hybrid systems,
but only Checkmate [10] can handle nonlinear dynamics. However, there is still
a need for a general-purpose open-source tool which can solve a wide variety of
problems in nonlinear dynamic systems.

The goal of the computational framework Ariadne [11] is to provide a syntax,
semantics and implementation of fundamental operations from geometry and
analysis, guided by formal computability theory. In this paper, we describe how
the numerical kernel of Ariadne, written in C++, implements computation
with sets and maps, in a way which can be efficiently implemented and is powerful
enough to solve the safety verification problem.

2 Reachability and Safety Computation

Consider a discrete-time system with state-space X described by the continuous
map f : X → X , a set of initial states X0 and a set of safe states S. The safety
verification problem is decide whether every orbit of f starting in X0 remains in
S. We can express the safety verification problem in terms of the reachable set as:

reach(f, X0) ⊂ S, where reach(f, X0) :=
⋃∞

n=0 fn(X0).

To even consider how to solve this problem, we first need to have a descrip-
tion of the sets S and X0 and the map f . Since the set of continuous functions
on R

n has continuum cardinality, we cannot represent all functions exactly. In-
stead, following Weihrauch [2], we describe elements of an infinite set Y by
a representation δ :⊂ Σω → Y , which encodes y ∈ Y by a sequences over
some alphabet Σ. To be useful, we must be able to obtain approximations to
y from a initial part of some p ∈ δ−1(y). Given representations δ0, . . . , δk of
sets Y0, . . . , Yk, we say a function f : Y1 × · · · × Yk → Y0 is computable if
there is a Turing-computable function M :⊂ Σω × · · · × Σω → Σω such that
δ0(M(p1, . . . , pk)) = f(δ1(p1), . . . , δk(pk)).

If (Y, τ) is a topological space with countable sub-base σ labelled by a partial
surjective function ν :⊂ Σ∗ → σ, then the standard representation δ of (Y, τ, σ, ν)
is defined by

δ(〈w1, w2, . . .〉) = y ⇐⇒ {ν(wi) | i ∈ N} = {J ∈ σ | y ∈ J}.

Informally, we say that δ encodes a list of all J ∈ σ such that y ∈ J .
In this paper, we fix a state space X (such as R

n) with countable base β. As
well as the set of points of X , the open sets O, closed sets A, compact sets K,
and continuous self-maps C of X all have natural topologies giving rise to the
following standard representations:

– The representation ρ of X encodes {J ∈ β | x ∈ J}.
– The lower representation θ< of O encodes {I ∈ β | I ⊂ U}.

Effective Computation for Nonlinear Systems 171

– The lower representation ψ< of A encodes {J ∈ β | J ∩ A
= ∅}.
– The upper representation ψ> of A encodes {I ∈ β | I ∩ A = ∅}.
– The upper representation κ> of K encodes {(J1, . . . , Jk)∈β∗ |C ⊂

⋃k
i=1Ji}.

– The compact-open representation δ of C encodes {(I, J) ∈ β × β | I ⊂
f−1(J)}.

In [5], we show that the optimal κ>-semicomputable over-approximation to
reach(f, X0) is the chain-reachable set

chainreach(f, X0) :=
⋂{

C ∈ K | X0 ∪ f(C) ⊂ C◦},

which may be much larger than the reachable set. This means that it is impossible
to prove safety (using only the approximate information about f , X0 and S given
by the standard representations) if chainreach(f, X0)
⊂ S, even if reach(f, X0) ⊂
S. Similarly, it is only possible to disprove safety if reach(f, X0)
⊂ S. Hence the
best possible solution to the safety verification problem (in an approximative
setting) is an algorithm which computes:

verify(f, X0, S) :=

⎧
⎪⎨

⎪⎩

 if chainreach(f, X0) ⊂ S;
⊥ if reach(f, X0)
⊂ S;
↑ otherwise.

3 Representations as Interfaces

The elements of a countable (i.e. discrete) set such as the integers or rational
numbers may be described exactly by finite data, and correspond to concrete
types. It is straightforward to implement types Integer and Rational which
implement integer and rational numbers, such that arithmetic and comparison
operators are computable.

The elements of an uncountable set such as the real numbers cannot be de-
scribed by a finite amount of data. However, we shall see that they can be ade-
quately described by abstract interfaces with properties reflecting the standard
representation.

Throughout the paper, we use typeface x to denote data types and x to denote
the corresponding mathematical object.

3.1 The Standard Representation of Points

Recall that we can describe an element of a Hausdorff space with countable
base β using the standard representation, which encodes a point x by listing its
basic open neighbourhoods. We could describe the standard representation by
a method neighbourhood taking an integer argument and returning an element
of β implemented by a BasicSet class:

virtual BasicSet Point::neighbourhood(Integer i);

172 P. Collins

In practice, it is more useful to be able to determine whether x lies in some
element I of β. Unfortunately, the standard representation ρ merely yields a
semi-decision algorithm for the predicate x ∈ I. If x
∈ I, we can indeed deduce
that x
∈ I , since there exists J ∈ β such that x ∈ J and I ∩J = ∅. But if x ∈ ∂I,
then no such J exists, so we are unable to show x
∈ I. Hence, any implementation
of a method bool Point::in(BasicSet) using only approximate information
about x will fail to terminate on x.in(I) if x ∈ ∂I.

In order to obtain a function which always terminates, we give a precision
argument p, and return an “indeterminate” value if we cannot decide x ∈ I or
x
∈ I to precision p. We therefore have a method
virtual tribool Point::in(BasicSet I, Integer p);

where tribool is the enumerated type {true,false,indeterminate}.
We now give conditions under which the in method specifies a point in X

uniquely. For consistency, we clearly require,

(C) If x.in(I,p)==true and x.in(J,r)==false, then I
⊂ J .

Define η = {J ∈ β | ∃p ∈ N s.t. x.in(J,p)==true}. Then η must satisfy the
following intersection, refinement and approximation properties:

(I) I1, I2 ∈ η =⇒ I1 ∩ I2
= ∅.
(R) I ∈ η and I ⊂ J1 ∪ · · · ∪ Jk =⇒ ∃ i ∈ {1, . . . , k} such that Ji ∈ η.
(A) J ∈ η =⇒ ∃I ∈ η such that I ⊂ J .

Further, if η is any set satisfying these properties, then there exists x such that
η = {J ∈ β | x ∈ J}.

To simplify code using the in method, we can assume that the method is
implemented such that the following precision and monotonicity properties are
satisfied:

(P) If r>p and x.in(I,p)!=indeterminate, then x.in(I,r)==x.in(I,p).
(M) If I ⊂J , then x.in(I,p)=⇒ x.in(J,p), and !x.in(J,p)=⇒ !x.in(I,p).

3.2 Representations of Sets

A closed set is uniquely specified by the basic open sets it intersects, or by the
basic closed sets it is disjoint from. These specifications give rise to the lower
and upper representations ψ< and ψ>, respectively. Since it cannot be true that
both A ∩ I
= ∅ and A ∩ I = ∅, we can specify an interface for closed sets by the
single method
virtual tribool ClosedSet::disjoint(BasicSet I, Integer p);

where p is the precision argument. Using the method disjoint, we can compute

α< = {I ∈ β | ∃ p ∈ N s.t. A.disjoint(I,p)==false},

α> = {I ∈ β | ∃ p ∈ N s.t. A.disjoint(I,p)==true}.

To ensure that disjoint gives consistent results, we require the following con-
dition on α< and α>.

Effective Computation for Nonlinear Systems 173

(DC) If I ∈ α< and Ji ∈ α> for i = 1, . . . , k, then I
⊂
⋃k

i=1 J i.

Given α< and α>, we can recover sets A< and A> by:

A< = {x | ∃(Ji)i∈N with Ji ∈ α< s.t. Ji+1 ⊂ Ji and
⋂

i∈N
Ji = {x}}.

A> = X \ U>, where U> = {x | ∃I ∈ α> s.t. x ∈ I}.

For α<, we impose the following monotonicity, refinement and approximation
properties:

(DM<) If I ⊂ J and I ∈ α<, then J ∈ α<.
(DR<) If I ⊂

⋃k
i=1 Ji and I ∈ α<, then there exists i such that Ji ∈ α<.

(DA<) If J ∈ α<, then there exists I ⊂ J such that I ∈ α<.

The condition DM< ensures that the set A< is closed, and the stronger condition
DR< ensures that every basic set I ∈ α< contains a point in A<.

In order that A> is a closed set, we require:

(DA>) If I ∈ α>, then there exists J ⊃ I such that J ∈ α>.

To simplify algorithms using the disjoint method, we usually require either:

(DM>) If I ⊂ J and J ∈ α>, then I ∈ α>.
(DR>) If I ⊂

⋃k
i=1 J i and Ji ∈ α> for all i, then I ∈ α>.

In order that α< and α> yield equal closed sets, we require:

(DE) For all J ∈ β, there exists I ⊂ J such that I ∈ α< ∪ α>.

The following result gives conditions under which the disjoint method contains
equivalent information to the standard representations of closed sets.

Theorem 1

1. If (DR<,DA<), then A< is closed and α< = {J ∈ β | A< ∩ J
= ∅}.
2. If (DA>) then A> is closed; if also (DR>) then α> = {I ∈ β | A>∩I = ∅}.
3. If (DC,DR<,DA<,DA>,DE), then A< = A>.

The proof is omitted.
Since an open set is the complement of a closed set, we immediately obtain

an interface for open sets:

virtual tribool OpenSet::superset(BasicSet,Integer);

The superset method defines a set U< =
⋃

{I | ∃ p s.t. U.superset(I)}. Given
properties analogous to those for the disjoint method, we can prove that the
superset interface is equivalent to the standard representation of open sets O.

Since a compact set is just a bounded closed set, we can specify a compact
set using the disjoint method, together with the method

virtual BasicSet CompactSet::BoundingBox();

which yields a basic set I ⊃ C.

174 P. Collins

3.3 Representations of Continuous Functions

Continuous functions can be described by the interface

virtual BasicSet Map::apply(BasicSet);

An object f of class Map represents a continuous function f if the following
consistency and refinement conditions hold:

(FC) f(I) ⊂ f.apply(I),
(FR) if J � f(x), then there exists I such that x ∈ I and f.apply(I) ⊂ J .

It is also useful in practise to impose the monotonicity property:

(FM) if I ⊂ J , then f.apply(I) ⊂ f.apply(J), and

A differentiable function can be specified by giving the Jacobian derivative ex-
plicitly as a matrix of interval values

virtual Matrix<Interval> C1Map::jacobian(BasicSet);

4 Implementation in Ariadne

4.1 Numerical Types

Ariadne supports various types which can be used to represent real numbers,
namely Float64, MPFloat, Rational and ComputableReal. These types are clas-
sified in terms of the way they handle arithmetic and approximation.

The ComputableReal type supports arbitrary arithmetical, algebraic and
transcendental functions, which return exact results. The Rational type only
supports arithmetic, but this is also exact. The floating-point types Float64
and MPFloat do not support exact arithmetic, since in general, arithmetical
operations cannot be computed exactly for these types. Instead, floating-point
types support interval arithmetic and functions, which return an object of type
Interval<Float> which must contain all possible results which could be
obtained.

The precision of a floating point type is the number of bits/bytes used to
store the number. The type Float64 is a fixed-precision type with 64 bits, and
the type MPFloat is a multiple-precision type. The precision of an object of type
MPFloat is set when the object is constructed, and is only changed on explicit
set precision function call. The precision may be given explicitly, but it is
usually more convenient to allow the precision to be determined implicitly by
the precision of the arguments (and of the result, if the object is a temporary
intermediate in a computation), and by a default precision. To avoid accidental
truncation, it is an error to assign a number to an MPFloat object of lower
precision, though assignment to Interval<MPFloat> objects is allowed.

The memory for an MPFloat is allocated on the heap, which may be slow, but
once the object is created, no memory management is required, so computation
is reasonably fast.

Effective Computation for Nonlinear Systems 175

The fixed-precision types are useful for problems where speed of execution is
paramount. The multiple-precision type can be used if the fixed-precision types
do not give sufficient accuracy, which may be the case if the problem depends
sensitively on initial data or is not robust to perturbations. Rational numbers
are useful when exact arithmetical results are required or efficiency is not an
issue, and computable real numbers are useful for problem specification.

Currently, the type Float64 is implemented using the IEEE double floating-
point numbers, the MPFloat type using mpfr t from the MPFR library [12], the
Rational using mpq t from the GMP library [13], and the ComputableReal type
using the iRRAM package [14].

4.2 Linear Algebra

Linear algebra is important when working with derivatives of maps, and with
polyhedral sets. In Ariadne, we provide Vector, Matrix and Tensor classes,
which can be used with rational numbers, floating-point numbers and intervals,
and also robust linear programming solvers for testing geometric predicates.

4.3 Geometric Calculus

The geometric calculus used by Ariadne is based around elementary basic set
types. A denotable set is a finite union of basic sets (of a given type), and can
be stored using a finite amount of data. Arbitrary sets are either described by
the interfaces given in Section 3.2, or by approximations in terms of denotable
sets. Operations on sets can be built on the fundamental geometric predicates
of disjointness and subset, and the operations of union, intersection, subdivision
and approximation.

To simplify the interface, we do not use an explicit precision argument in
Ariadne. Instead, the precision of an operation acting on sets represented us-
ing floating-point types is determined by the precision used for the arguments
and the default precision. Basic sets with interval coefficients are returned by op-
erations which require arithmetic on sets represented using floating-point types.
Operations using sets based on rational numbers are computed exactly.

The simplest type of basic set for Euclidean space are the rational or dyadic
hypercubes of the form [a1, b1]× [a2, b2]×· · ·× [an, bn]. In Ariadne, hypercubes
are represented by the template Cuboid<R>, where R is the numerical type used
to represent the ai and bi. This may be a Float type, an Interval<Float> or
a Rational. The core interface is given below:

class Cuboid<R> {
Integer dimension();
R lower bound(Integer);
R upper bound(Integer);

Integer precision();
};

176 P. Collins

Besides cuboids, Ariadne provides basic set classes

Zonotope: {x ∈ R
n | x = c + Ge where c ∈ R

n, G ∈ R
n×k and e ∈ [−1, 1]k}.

Polytope: {x ∈ R
n | x = V s where V ∈ R

n×k, s ∈ R
k
+ and

∑k
i=1 si = 1}.

Polyhedron: {x ∈ R
n | Ax ≤ b where A ∈ R

k×n and b ∈ R
k}.

The Zonotope class is useful to support higher-order integration of vector fields
and iteration of maps. The Polytope and Polyhedron classes are general classes
which are useful for computing geometric predicates; additionally, Polyhedron
class may be useful for specifying input sets. Any polyhedral set can be converted
to a Polytope or Polyhedron, although in most cases the conversion cannot be
done exactly using floating-point arithmetic. Parallelotope, Simplex, Sphere
and Ellipsoid classes are also provided. The basic set classes support the binary
predicates given below.

tribool contains(Cuboid<R1>, Point<R2>);
tribool disjoint(Cuboid<R1>, Cuboid<R2>);
tribool subset(Cuboid<R1>, Cuboid<R2>);

These predicates return indeterminate if the result is not robust with re-
spect to changes in the parameters. Basic set types also support the Cuboid
bounding box(), subdivide and over approximation functions. Other binary
operations are provided where natural, such as minkowski sum, convex hull,
open intersection and closed intersection.

A denotable set is a set which is described exactly as a finite union of basic
sets, and typically represents an approximation to some other set. Denotable sets
support the fundamental geometric operations, iteration through their elements
and the union function.

Ariadne currently supports classes ListSet<BasicSet>, GridCellListSet,
GridMaskSet and PartitionTreeSet. A ListSet is an arbitrary finite union of
basic sets. The other types are partition sets, since they are based on a topological
partition of the state space. The GridMaskSet class is easy to work with and is an
efficient way of storing unstructured sets. The GridCellListSet class is useful to
represent approximations to basic sets. The PartitionTreeSet class is a highly
efficient way of storing structured sets with dynamically-varying resolution.

We say a denotable set is an under-approximation to a set S if
⋃k

i=1Ii ⊂ S, and
an over-approximation if

⋃k
i=1Ii ⊃ S. A list set

⋃k
i=1 Ji is a lower-approximation

to S if Ji ∩S
= ∅ for all i. Approximations on partition sets can be specified
by giving a Grid or other Partition, or by directly adjoining elements of an
existing partition set:

void PartitionSet::adjoin over approximation(Set);

General sets can be specified by how they interact with Cuboid basic sets, as
given by the methods disjoint, superset, subset and bounding box. Using
superset we can compute under approximations, using disjoint we can com-
pute lower-approximations, and using disjoint and subset or bounding box,
we can compute over-approximations.

Effective Computation for Nonlinear Systems 177

4.4 Computing the Image of Sets

One of the most important tasks in Ariadne is to compute the image of a set
under a continuous function. Using just the apply method of the Map interface
described in Section 3.3, we can compute images and preimages of general sets:

CompactSet image(Map, CompactSet);
ClosedSet lower image(Map, ClosedSet);
OpenSet lower preimage(Map, OpenSet);

The image of a closed, but not compact set, and the preimage of an open set are
only lower-semicomputable, in the sense that we can only effectively compute
convergent lower-approximations to result. The image of a compact set can be
computed to arbitrary accuracy.

Although the apply method is in principle sufficient to compute set images
and preimages, convergence to a good approximation tends to be slow due to
the “wrapping effect” of interval arithmetic. It is therefore preferable to use
higher-order algorithms if derivatives of the function are available. Since the
class of zonotopes is closed under affine maps, we can use zonotopes to compute
first-order approximations to the image of a set.

Zonotope<Interval<R>> apply(C1Map<R>, Zonotope<R>);

The return type is an interval set to avoid expensive approximation operations.
The image of a rational zonotope under an affine map can be computed exactly.
If higher-order derivatives are available, even more accurate Taylor methods can
be used.

4.5 The Verification Algorithm

We can now sketch an algorithm to solve the safety problem.
To attempt to verify chainreach(f, X0) ⊂ S for some bounded open set S, we

compute an over-approximation X̂0 to X0 and an under-approximation S̃ of S
on a grid G using the over approximate and under approximate functions. We
then discretise f by computing an over-approximation f̂(I) to f(I) for every grid
cell I using the apply(Map,Zonotope) and over approximate(Zonotope,Grid)

functions. Finally, we can compute the reachable set X̂0 under f̂ combinatorially.
It is straightforward to show that if reach(f̂ , X̂0) ⊂ S̃ then chainreach(f, X0) ⊂
S, and that the converse holds if the grid G is sufficiently fine.

To attempt to verify reach(f, X0)
⊂ S, we find a basic set I and a natural
number n such that X0∩I
= ∅ and fn(I)∩S = ∅. We can use the apply function
to compute an over-approximation În to fn(I), and the disjoint method to
show X0 ∩ I
= ∅ and S ∩ În = ∅.

In practice, over-approximations to fn(X0) are adaptively computed on-the-
fly, and counterexamples from the discretised safety verification algorithm are
used to guide safety falsification.

178 P. Collins

5 Concluding Remarks

In this paper, we have outlined a scheme for rigorous computation on sets and
maps based on the theory of computable analysis and standard representation
of topological space. This scheme is being used as the interface for the imple-
mentation in C++ of the numerical kernel of the tool Ariadne for reachability
analysis and verification of nonlinear and hybrid dynamical and control systems.
The operations required by the interface have a natural syntax and have efficient
implementations, some which are based on well-studied general algorithms such
as the simplex algorithm or integration algorithms.

Ongoing work includes improving the efficiency of the existing algorithms in
Ariadne, providing more advanced capabilities for applying maps and integra-
tion vector fields based on higher-order Taylor methods, providing interfaces to
external packages, and extending the interface to cover more advanced problems.

References

1. van der Schaft, A., Schumacher, H.: An introduction to hybrid dynamical systems.
Lecture notes in control and information sciences, vol. 251. Springer, London (2000)

2. Weihrauch, K.: Computable analysis - An introduction. In: Texts in Theoretical
Computer Science, Springer, Heidelberg (2000)

3. Brattka, V., Presser, G.: Computability on subsets of metric spaces. Theoretical
Comp. Sci. 305, 43–76 (2003)

4. Stoltenberg-Hansen, V., Lindström, I., Griffor, E.R.: Mathematical Theory of Do-
mains. Cambridge University Press, Cambridge (1994)

5. Collins, P.: Continuity and computability of reachable sets. Theor. Comput.
Sci. 341, 162–195 (2005)

6. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J (1966)
7. Dellnitz, M., Froyland, G., Junge, O.: The algorithms behind GAIO-set oriented

numerical methods for dynamical systems. In: Ergodic theory, analysis, and effi-
cient simulation of dynamical systems, pp. 145–174. Springer, Heidelberg (2001)

8. Mrozek, M., et al.: CAPD Library (2007), http://capd.wsb-nlu.edu.pl/
9. Nedialkov, N.S.: VNODE-LP: A validated solver for initial value problems in

ordinary differential equations. Technical report, McMaster University (2006) CAS-
06-06-NN.

10. Izaias Silva, B., Keith Richeson, B.K., Chutinan, A.: Modeling and verification of
hybrid dynamical system using CheckMate. In: Proceedings of the International
Conference on Automation of Mixed Processes. pp. 189–194 (2000)

11. Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-
Vincentelli, A.L.: Ariadne: a framework for reachability analysis of hybrid au-
tomata. In: Proceedings of the International Syposium on Mathematical Theory
of Networks and Systems (2006)

12. Hanrot, G., et al.: The MPFR library (2000), http://www.mpfr.org/
13. Granlund, T., et al.: The GMP library (2005), http://swox.com/gmp/
14. Müller, N., et al.: iRRAM (2006), http://www.informatik.uni-trier.de/iRRAM/

http://capd.wsb-nlu.edu.pl/
http://www.mpfr.org/
http://swox.com/gmp/
http://www.informatik.uni-trier.de/iRRAM/

	Effective Computation for Nonlinear Systems
	Introduction
	Reachability and Safety Computation
	Representations as Interfaces
	The Standard Representation of Points
	Representations of Sets
	Representations of Continuous Functions

	Implementation in Ariadne
	Numerical Types
	Linear Algebra
	Geometric Calculus
	Computing the Image of Sets
	The Verification Algorithm

	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

